
Chapter-4 DQL - SQL Joins with MS SQL 
Server 
 

In MS SQL Server, SQL Joins are used to retrieve data from multiple tables based on a related 
column between them. A join allows you to combine rows from two or more tables by using a 
related column. SQL joins are essential for working with normalized relational databases, where 
data is spread across multiple tables to avoid redundancy. 

There are several types of SQL joins in MS SQL Server, each serving different purposes based on 
the relationship between the tables. 

 

1. INNER JOIN 

An INNER JOIN returns only the rows that have matching values in both tables. If no match is 
found, those rows are excluded from the result set. 

Syntax: 

SELECT columns 
FROM table1 
INNER JOIN table2 
ON table1.column = table2.column; 

Example: 

SELECT Employees.EmployeeName, Departments.DepartmentName 
FROM Employees 
INNER JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID; 

This query will return only employees who are assigned to a department. Employees without a 
department or departments without employees will be excluded. 

 

2. LEFT JOIN (or LEFT OUTER JOIN) 

A LEFT JOIN returns all rows from the left table (table1), and the matched rows from the right 
table (table2). If there is no match, NULL values will be returned for columns from the right 
table. 



 

Syntax: 

SELECT columns 
FROM table1 
LEFT JOIN table2 
ON table1.column = table2.column; 

Example: 

SELECT Employees.EmployeeName, Departments.DepartmentName 
FROM Employees 
LEFT JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID; 

This query will return all employees, even those who are not assigned to any department. For 
employees without a department, the DepartmentName will be NULL. 

 

3. RIGHT JOIN (or RIGHT OUTER JOIN) 

A RIGHT JOIN is the opposite of the LEFT JOIN. It returns all rows from the right table (table2), 
and the matched rows from the left table (table1). If no match is found, NULL values are 
returned for columns from the left table. 

Syntax: 

SELECT columns 
FROM table1 
RIGHT JOIN table2 
ON table1.column = table2.column; 

Example: 

SELECT Employees.EmployeeName, Departments.DepartmentName 
FROM Employees 
RIGHT JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID; 

This query will return all departments, including those without any employees. For departments 
without employees, the EmployeeName will be NULL. 

 

4. FULL JOIN (or FULL OUTER JOIN) 



A FULL JOIN returns all rows when there is a match in either the left or right table. If there is no 
match, the result will include NULL values for columns from the table that lacks a matching row. 

Syntax: 

SELECT columns 
FROM table1 
FULL JOIN table2 
ON table1.column = table2.column; 

Example: 

SELECT Employees.EmployeeName, Departments.DepartmentName 
FROM Employees 
FULL JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID; 

This query will return all employees and all departments. Employees without departments and 
departments without employees will show NULL in the respective columns. 

 

5. CROSS JOIN 

A CROSS JOIN returns the Cartesian product of two tables. It returns all possible combinations 
of rows from the left and right tables. This join does not require a condition to join the tables, 
and it can result in a large number of rows. 

Syntax: 

SELECT columns 
FROM table1 
CROSS JOIN table2; 

Example: 

SELECT Employees.EmployeeName, Departments.DepartmentName 
FROM Employees 
CROSS JOIN Departments; 

This query will return every combination of employees and departments, regardless of any 
matching columns. For example, if there are 10 employees and 5 departments, the result will 
contain 50 rows (10 x 5). 

 

6. SELF JOIN 



A SELF JOIN is a join where a table is joined with itself. This is useful when you need to compare 
rows within the same table. You can use aliases to differentiate the two instances of the same 
table. 

Syntax: 

SELECT A.column1, B.column2 
FROM table A, table B 
WHERE A.column = B.column; 

Example: 

SELECT E1.EmployeeName AS Manager, E2.EmployeeName AS Employee 
FROM Employees E1 
INNER JOIN Employees E2 ON E1.EmployeeID = E2.ManagerID; 

In this example, the Employees table is joined with itself to show a list of managers and the 
employees they manage. Each row in Employees represents either a manager (aliased as E1) or an 
employee (aliased as E2). 

 

7. JOIN with Multiple Tables 

You can join more than two tables in a single query by using multiple JOIN clauses. The tables 
are joined in sequence based on their relationships. 

Syntax: 

SELECT columns 
FROM table1 
INNER JOIN table2 ON table1.column = table2.column 
INNER JOIN table3 ON table2.column = table3.column; 

Example: 

SELECT Employees.EmployeeName, Departments.DepartmentName, Locations.LocationName 
FROM Employees 
INNER JOIN Departments ON Employees.DepartmentID = Departments.DepartmentID 
INNER JOIN Locations ON Departments.LocationID = Locations.LocationID; 

This query joins three tables (Employees, Departments, and Locations) to retrieve employees, their 
departments, and the locations of those departments. 

 



8. Using Aliases with Joins 

Table aliases are often used in joins to simplify the query and improve readability, especially 
when dealing with multiple joins or self-joins. Aliases allow you to refer to tables more 
succinctly. 

Example: 

SELECT E.EmployeeName, D.DepartmentName 
FROM Employees E 
INNER JOIN Departments D ON E.DepartmentID = D.DepartmentID; 

Here, E is an alias for the Employees table, and D is an alias for the Departments table. 

 

Summary of Join Types: 

Join Type Description 

INNER JOIN Returns only the rows with matching values in both tables. 

LEFT JOIN Returns all rows from the left table and matched rows from the right table. 

RIGHT JOIN Returns all rows from the right table and matched rows from the left table. 

FULL JOIN Returns rows when there is a match in either the left or right table. 

CROSS JOIN Returns the Cartesian product of both tables. 

SELF JOIN Joins a table with itself to compare rows within the same table. 

 


